

Tribhuvan University
 Faculty of Humanities \& Social Sciences
 OFFICE OF THE DEAN

2019
Bachelor in Computer Applications
Full Marks: 60
Course Title: Digital Logic
Pass Marks: 24
Code No: CACS 105
Time: 3 hours
Semester: $1^{\text {st }}$
Centre:

Symbol No:

Candidates are required to answer the questions in their own words as far as possible.

Group A

Attempt all the questions.
$[10 \times 1=10]$

1. Circle (O) the correct answer.
i) Which one of the following is hexadecimal equivalent of $(5073.052)_{8}$?
a) A3C. 150
b) B2B. 140
c) A3B. 150
d) B3A. 150
ii) Which one of the following is 9 's complement of (3578.501) $)_{10}$?
a) 4926.947
b) 3926.947
c) 4926.937
d) None of the Above
iii) Which one of the following is the equivalent reflected code of 1101 ?
a) 1001
b) 1011
c) 1000
d) 1010
iv) When output will go high in NOR Gate?
a) if all inputs are high
b) if any input is high
c) if any input is low
d) if all inputs are low
v) According to Boolean algebra: What is the value of $X+1=$?
a) \bar{X}
b) 1
c) 0
d) X
vi) The logic circuits whose outputs at any instant of time depends only on the present input but also on the past outputs are called
a) Combinational circuits
b) Sequential circuits
c) Latches
d) Flip-flops
vii) If $\mathrm{Q}=1$, the output is said to be
a) Reset
b) Set
c) Previous state
d) current state
viii) Which one of the following are also called ripple counters?
a) SSI counters
b) Synchronous counters
c) Asynchronous counters
d) VLSI counters
ix) How many flip-flops are required to construct MOD-30 counter?
a) 5
b) 6
c) 4
d) 8
x) How much storage capacity does each stage in a shift register represent?
a) One bit
b) Two bits
c) Four bits
d) Eight bits

Tribhuvan University

Faculty of Humanities \& Social Sciences
 OFFICE OF THE DEAN

2019

Bachelor in Computer Applications
Full Marks: 60
Course Title: Digital Logic
Pass Marks: 24
Code No: CACS 105
Time: 3 hours
Semester: $1^{\text {st }}$

Candidates are required to answer the questions in their own words as far as possible.

Group B

Attempt any SIX questions.
$[6 \times 5=30]$
2. Subtract: $1010.110-101.101$ using both 2 's and 1's complement.
3. Simplify (Using k-map) the given Boolean function in both SOP and POS using the don't care condition d:

$$
F(A, B, C, D)=\pi(0,1,3,7,8,12) \text { and } \pi d(5,10,13,14)
$$

$$
[2+3]
$$

4. Define decoder. Draw logic diagram and truth table of 3 to 8 -line decoder.
5. Define ROM. Implement the following combinational logic function using ROM: $\quad[2+3]$

A1	A0	F1	F2
0	0	1	0
0	1	0	1
1	0	1	1
1	1	1	0

6. What are the drawbacks of clocked RS flip flop? Explain the operation of JK Flip flop along with its circuit diagram and characteristic table.
7. What is T flip-flop? Explain clocked JK flip-flop with its logic diagram and truth table.

$$
[1+4]
$$

Group C

Attempt any TWO questions.

9. Define PLA. Design a PLA circuit with given functions.
$\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma(3,5,6,7)$
F2 $(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma(0,2,4,7)$. Design PLA program table also.
10. Distinguish between sequential and combinational logic with example? Discuss the design procedure of combinational logic.
11. A sequential circuit with two D flip-flops, A and B, two inputs x and y, and one output z, is specified by the following next state and output equations

$$
\begin{aligned}
& \mathrm{A}(\mathrm{t}+1)=\mathrm{x}^{\prime} \mathrm{y}+\mathrm{xA} \\
& \mathrm{~B}(\mathrm{t}+1)=\mathrm{x}^{\prime} \mathrm{B}+\mathrm{xA} \\
& \mathrm{z}=\mathrm{B}
\end{aligned}
$$

a) Draw the logic diagram.
b) Derive the state table.
c) Derive the state diagram.

